OEM Shell Casting Iron Components

OEM Shell Casting Iron Components

Material: Ductile Iron, Nodular Iron and Gray Iron
Process: Shell Casting
Weight: 2.90

OEM Shell Mould Casting Iron Components with Engineering Services

Description

OEM Shell Mould Casting Iron Components with Engineering Services


Shell molding casting is also called pre-coated resin sand casting process, hot shell molding castings or core casting process. The main molding material is the pre-coated phenolic resin sand, which is more expensive than green sand and furan resin sand. Moreover, this sand can not be recycle used. 

The shell molding casting components have a little higher costs than sand casting. However, the shell molding casting parts have many advantages such as tighter dimensional tolerance, good surface quality and less casting defects.

▶ Shell Molding Casting Raw Materials:
    • Cast Carbon Steel: Low Carbon Steel, Medium Carbon Steel and High Carbon Steel from AISI 1020 to AISI 1060. 
    • Cast Steel Alloys: 20CrMnTi, 20SiMn, 30SiMn, 30CrMo, 35CrMo, 35SiMn, 35CrMnSi, 40Mn, 40Cr, 42Cr, 42CrMo...etc on request.
    • Cast Stainless Steel: AISI 304, AISI 304L, AISI 316, AISI 316L and other stainless steel grade.
    • Cast Aluminium Alloys.
    • Brass & Copper.
    • Other Materials and Standards on request

▶ Shell Casting Capacities: 
    • Max Size: 1,000 mm × 800 mm × 500 mm
    • Weight Range: 0.5 kg - 100 kg
    • Annual Capacity: 2,000 tons
    • Tolerances: On Request. 

▶ Inspecting Precision Shell Mold Casting Components: 
    • Spectrographic and manual quantitative analysis
    • Metallographic analysis
    • Brinell, Rockwell and Vickers hardness inspection
    • Mechanical property analysis
    • Low and normal temperature impact testing
    • Cleanliness inspection
    • UT, MT and RT inspection

▶ Shell Mold Casting Procedures: 
    ✔ Making Metal Patterns. The pre-coated resin sand needs to be heated in the patterns, so metal patterns are the necessary tooling to make shell molding castings. 
    ✔ Making Pre-coated Sand Mold. After installing the metal patterns on the molding machine, the pre-coated resin sand will be shot into the patterns, and after heating, the resin coating will be molten, then the sand molds  become solid sand shell and cores.
    ✔ Melting the Cast Metal. Using induction furnaces, the materials would be melted into liquid, then the chemical compositions of the liquid iron should be analyzed to match the required numbers and percents. 
    ✔ Pouring Metal. When the melted iron meet the requirements, then they will be poured into the shell molds. Based on different characters of the casting design, the shell molds will be buried into green sand or stacked up by layers.
    ✔ Shot Blasting, Grinding and Cleaning. After the cooling and solidification of the castings, the risers, gates or additional iron should be cut off and removed. Then the iron castings will be cleaned by sand peening equipment or shot blasting machines. After grinding the gating head and parting lines, the finished casting parts would come, waiting for the further processes if needed. 

▶ Post-Casting Process
    • Deburring & Cleaning
    • Shot Blasting / Sand Peening
    • Heat Treatment: Normalization, Quench, Tempering, Carburization, Nitriding
    • Surface Treatment: Passivation, Andonizing, Electroplating, Hot Zinc Plating, Zinc Plating, Nickel Plating, Polishing, Electro-Polishing, Painting, GeoMet, Zintec. 
    • Machining: Turning, Milling, Lathing, Drilling, Honing, Grinding.

▶ Why You Choose RMC for Shell Mold Casting Components?
    ✔ Precision and therefore a high material utilization. You will get a net or near-net-shape products after shell molding casting, depending on the requirements of end-users, there will be no or very little machining process is required.
    ✔ Better surface performance. Thanks to the new-tech materials for molding, the castings from shell molding have a much fine and higher accuracy surface.
    ✔ A good balanced choice comparing to the sand casting and investment. The shell molding casting have better performance and surface than sand casting, while having much lower costs than precision investment casting. 

▶ General Commerial Terms
    • Main workflow: Inquiry & Quotation → Confirming Details / Cost Reduction Proposals → Tooling Development → Trial Casting → Samples Approval → Trial Order → Mass Production → Continuous Order Proceeding
    • Leadtime: Estimatedly 15-25 days for tooling development and estimatedly 20 days for mass production.
    • Payment Terms: To be negotiated.
    • Payment methods: T/T, L/C, West Union, Paypal.